

Aluminium Dross and Scrap Recycling

The Hybrid Tilting Rotary Furnace MASTERmax from KMF

What we do

Tilting Rotary Furnaces "MASTERmax" for

Aluminium Recycling

Recycling Furnaces

Special Machinery

Ffleece applicators "FLEECEmax" for profiled sheet metals, contract manufacturing

Mills & Grinders

Stirr ball mills and hydro classifiers for various industrial minerals

Engineering & Construction

Construction Layouting FEM Calculation Design

www.kmf.at

MASTERmax in 0° Horizontal Position

MASTERmax in -8° Backtilted Position

MASTERmax in 25° Tilted Position for Deslagging

Multiple Scrap, One Furnace

MASTERmax Cycle for Liquid and Dry Slag Process

The Tilting Hybrid Rotary Furnace MASTERmax

Hybrid Tilting Rotary Furnace MASTERmax with Maximized Recycling Efficiency

- Most innovative technology available
- Modular capacity range from 2 t to 25 t
- Daily scrap throughput from 15 t to 130 t
- Tiltable from -8° up to 25°

Turn-Key plants inclusive holding furnaces, ingot casting machines and dust filters, chip processing units, launder heaters

BATCHmax – Charging Machine

- Turning charging box
- Mimimized charging time
- Mimimized door opening time (ca. 80s)
- Uniform distribution of scrap along the whole furnace

Efficient Tapping and Cleaning

Excellent phase separation due to tapping valve at the furnace bottom

Process slag is discharged through furnace door

Process Optimization with Real Time Weighing System

						_					
					W	aage					
	Brutto	[kg]	Tara	[kg]	Net	to [kg]	Delta	[kg/mir) Diff	erenz (k	9]
	869	29	81	299	5	630		0,0		0,0	
			5	06	53	50)			K	(
main	anawic	ht fkr	-	6) 3	50		Ofenrei	iniauna		((
argie	ergewic	ht [kg	1	06		50		Ofenre		karchgef	ähru
	argewic 320	ht [kg	-	03:	624	04:		Ofenrei	inigung (951		
01:		4	1							lurchgef	ähru
)1:)7:	320	02:	1] 815	03:		04:		05:		turchgef 06:	ährti
argie 01: 07: 13: 19:	320	02: 08:	1] 815	03: 09:		04:		05: 11:		06: 12:	ährti

MELTmax – Melt Processor with Touch Panel

MELTmax – Melt Processor with Touch Panel

MELTmax – Melt Processor with Touch Panel

scrap types								
scrap administration								
selection:	profil					<u>×</u>		
name:	profil			7		A CARLER OF		
picture selection:	alu_teile.jpg					200		
storage place:					() ()			
spec. weight:	400	kg/m³	AI:	83.0 %	Si: 10.0	% Fe: 2.0	%	
melt yield:	83.0	0⁄0	Cu:	3.0 %	Cr: 0.0	% Mn: 1.0	⁰∕о	
flux factor:	0.50		Mg:	1.0 %	Zn: 0.0	% Ti: 0.0	⁰∕о	
humidity:	0.0	0∕o	Sn:	0.0 %	Ni: 0.0	% Pb: 0.0	⁰∕о	
organic:	4.0	<u>%</u>	othe	rs: 0	.0 %	test melt	ing	
priority (09):	0	oil	& fat	paper	plastic	paint		
-alloying:	231 D		.00	0.00	0.25	0.75 Σ 1	,0r	

MELTmax – only 1 operator is needed to run the furnace

product ac	Iministration								
product administration									
selection:	test1	•	<u> </u>	<u>x</u>					
name:	test1		9	auto sort: 🖌					
		▲ ▼							
type of scrap:	Kabel mit 30% Eis	Gus mit 8% Eisen	Sheredit-Shredder						

weight:	2000	1500	4500	kg					
melt yield:	60.0	78.0	65.0	0/0					
flux factor:	0.10	0.20	0.30						
humidity:	0.5	1.5	1.5	0/0					
organic:	1.0	3.0	3.5	0⁄0					
kg-charging	kg-scrap l	kg-flux	kg-liquid	V					
8619 =	8000 +	619>	5295	start production					

MASTERmax Features

- Rugged horizontal design and high furnace chamber ratio for controlled melting of organically contaminated scraps with up to 8% organics
- Counter (reverse) flow combustion system for optimum energy efficiency and maximum combustion of hydrocarbons, assisted by optional oxygen injection.
- Real time weighing system with unique precision for immediate materials balance after each charge.
- Tapping valve with positive slag and metal phase separation.
- Unique melt processor MELTmax with scrap data base, salt factor calculation and total process control for repeatable results of melting cycle.
- Compliance with EC emission laws in connection with suitable bag filter unit.
- Higher yield and lower salt additions due to controlled furnace atmosphere, thus minimizing presence of oxygen during melting.
- Operation either with horizontal axis for highly contaminated scrap and thin walled scrap requiring the liquid slag process, or with inclined axis up to 8° for the low salt, dry slag process.
- Special temperature resistant high hot-strength insulation for stability of the refractory lining and long refractory life with low maintenance costs due to non-wetting lining.
- Automatic operation with permanent PLC process control and display of all parameters.

Design, Construction and Installing of Turn-Key Recycling Cast Houses

Basic Engineering – Turn Key Aluminium Recycling Plant Layout

Clean Scrap with MASTERmax

Coated Sheet Scrap with MASTERmax

www.kmf.at

Baled UBC with MASTERmax

Shreddered UBC with MASTERmax

www.kmf.at

Chips with max 5% moisture with MASTERmax

Contaminated cast scrap with MASTERmax

Oxidized flotated shredder scrap with MASTERmax

www.kmf.at

Dross with app. 35-50% Aluminium with MASTERmax

Dross with app. 50-75% Aluminium with MASTERmax 5 0 0 Salt: 5-6% Yield 45 – 70% Gas 35 - 40 m³/t scrap

Operating Figures of KMF Hybrid Tilting Rotary Furnace MASTERmax

Generally 4% – 6% higher yield and 30% – 70% less energy consumption compared to fixed axis rotary and reverbatory furnaces.

| Energy Consumption
[kWh/t] |
|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 350-400 | 300-350 | 300-400 | 400-450 | 350-450 |
| Yield [%] |
| 95-97 | 85-90 | 75-88 | 88-92 | 40-70 |

Comparision of TRF and Reverbatory/Sidewell Furnace

	MASTERmax Tilting Rotary Furnace	Sidewell furnace / Twin Chamber Furnace		MASTERmax Tilting Rotary Furnace	Sidewell furnace / Twin Chamber Furnace
DROSS	Suitable	Not suitable	CHIPS	Suitable For unprocessed chips up to appr. 6% moisture Yield up to 83%, 400 kWh/t	Suitable only for processed, dried chips. Vortex and pump necessary, high capital investment
COATED LARGE COILS	Suitable KMF Yield 85% – 90%, 400 kWh/t	Not suitable	COATED PRODUCTION SCRAP	Suitable KMF Vield 85% – 90%, 350 kWh/t	Suitable Yield 85 – 90%, 750 kWh/t
COATED FOIL	Suitable KMF Yield 75% – 80%, 350 kWh/t	Not suitable	UBC	Suitable	Suitable Yield 75 – 80%, 750 kWh/t

Comparision of TRF and Reverbatory/Sidewell Furnace

Comparision of Yield

Comparision of TRF and Reverbatory/Sidewell Furnace

Comparision of Energy Consumption

TRF-energy consumption [kWh/tinput]

■ Sidewell/Twinchamber energy consumption [kWh/tinput]

Worldwide Transport, Assembly and Installation

- Crane capacity up to 60 t
 - Forklift capacity up to 6 t
 - Railway connection
 - Worldwide installation, commissioning and production training

www.kmf.at

Selected Reference Projects

8 t MASTERmax, Hungary

9 t MASTERmax, Turkey

12 t MASTERmax, Spain

12 t MASTERmax, Czech Republic

9 t MASTERmax, Germany

5 t MASTERmax, India 9 t MASTERmax, India

Europe

- Andritz (A)
- Agip (I)
- Arcelor Mittal (F)
- Cincinnati (A)
- Corus (UK)
- Engel (A)
- Euroclad (UK)
- Global Hydro Energy (A)
- Hobas (A)
- JAKE (D)
- Kone Cranes (Fin)
- Köfem (Hungary)
- Lindner Recyclingtechnik (A)
- Samesor (Fin)
- Hobas (CH)

- Maerz Ofenbau (CH)
- Mitsubishi (D)
- Omya (CH)
- Plannja (DK)
- Rheinfelden Alloys (D)
- RHI (A)
- Salvagnini (A)
- Siemens VAI (A)
- SMS (D)
- Danieli (I)
- Heraklith (A)
- CoreAL (ES)
- Lenzing (A)
- Polysius (D)

Africa/Asia / Middle East

- Mondi Paper (South Africa)
- Mitsui (JP)
- TAHA (Bahrain)
- Kiliçlar (Turkey)
- Rio Tinto (NZ)
- Axayya Alloys (India)
- LCP Building (Singapore)
- Marudhar Industries

KINF

Contact

Italiener Strasse 62 9500 Villach, Austria / Europe

Dr. Erhard Ogris Head of Sales

phone: [+43] (0) 699 1200 3307 erhard.ogris@kmf.at

Peter Kalkusch Senior Sales Manager

phone: [+43] (0) 699 1200 3322 peter.kalkusch@kmf.at

